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Abstract 
The barium hollandite Bal.33Mgl.33Ti6.67O16 under- 
goes an order-disorder transition at 1100(10)K. 
Below this temperature the Ba and vacant sites in the 
tunnels of the hollandite structure are ordered with 
the sequence Ba-Ba-vacancy and b =3bhollandite. At 
the same time, antiphase domains form which pro- 
duce broadened X-ray diffraction lines and electron 
diffraction peaks shifted off their commensurate 
superstructure positions. This shift in the diffraction 
peaks is explained by the formation of a boundary 
layer with a spacing of 2"5bhollandite between adjacent 
domains. Equations are developed relating the peak 
shift to the domain size which are consistent with 
observed electron diffraction patterns. The theory is 
extended to interpret the broadening of X-ray powder 
diffraction lines. During the early stages of domain 
growth boundaries form on (101), (10i) and (010) 
planes. Domain growth occurs mainly in the [101] 
and [10T] directions and after extended annealing 
only (010) boundaries remain. 

Introduction 
Barium hollandite is one component of the synthetic 
mineral SYNROC. This material is being developed 
to immobilize high-level nuclear waste (Fielding & 
White, 1987) with hollandite acting as the host for 
radioactive caesium, barium and other large alkali 
ions. Kesson & White (1986a, b) and Cheary (1987) 
have examined how these ions are accommodated 
within the hollandite structure and the nature of the 
ordering that occurs amongst these ions on the tunnel 
sites. In barium magnesium hollandites, the subject 
of the present work, the tunnel sites are only partially 
occupied by Ba and the monoclinic unit cell (b axis 
unique) has the composition 

[Bax @ 2_x][MgxTis_x]O16 

where @ represents vacant sites within the tunnels 
and x can be any value between 1.14 (57% occupancy) 
and 1.33 (67% occupancy). The Mg and Ti ions 
occupy sites within oxygen octahedra that form the 
tunnel walls and the tunnel axis is along the b 
direction. 

Various ordered sequences or superstructures of 
Ba and ® can form depending on the composition 
but only at x = 1.20 and 1.33 are the superstructures 
commensurate with the hollandite lattice (Bursill & 
Grzinic, 1980). At x = 1.33 the ordering sequence is 
Ba-Ba-® and the superstructure has a repeat dis- 
tance along the tunnel direction bsup =3bho~ where 
bhol = 3 A is the hollandite unit-cell parameter along 
the tunnel direction. At x = 1.20 the sequence adopted 
is B a - B a - ® - B a - ®  and bsup=5bhoJ. Ordering is 
readily identified by the presence of superlattice peaks 
in both the electron diffraction pattern and X-ray 
powder pattern. In electron diffraction the multi- 
plicity m of the ordering can be measured directly 
from a [100] or [001] zone pattern by measuring the 
ratio of the height of the first layer of superlattice 
spots to the height of the 020 spot above the zero 
layer. Perfect ordering at x = 1.20 and 1-33 therefore 
corresponds to multiplicities of rn = 5 and 6, respec- 
tively. The variation of multiplicity with Ba con- 
centration has been measured by Bursill & Grzinic 
(1980) and Cheary & Squadrito (1989). At the lower 
end of the solid-solution range of barium magnesium 
hollandites (i.e. x= 1.14), the multiplicity is in the 
range 4.70-4.75. It should be noted that Bursill & 
Grzinic ascribe their minimum multiplicity to a com- 
position of x = 0.8. We believe this to be incorrect as 
the minimum x value has been clearly established as 
x -~ 1.14 (Roth, 1981; Cheary & Squadrito, 1989). This 
is further supported by the fact that no Ba hollandites 
have been synthesized with x < 1 (Kesson & White, 
1986a). At the upper end of the Ba concentration 
range, x = 1.33, the multiplicity reaches a maximum 
between 5.85 and 5.90 even with excess Ba in the 
starting materials. In Bal.33(Ga/Ti) hollandite the 
maximum observed multiplicity by Bursill & Grzinic 
is 5.93. In general, the multiplicity m and the Ba/unit 
cell x closely follow the relation proposed by Mijlhoff, 
IJdo & Zandbergen (1985), 

x = 2 ( 1 - 2 / m ) .  (1) 

As shown in Cheary & Squadrito (1989), (1) works 
well in the middle of the composition range but is 
only approximate at either end of the solid-solution 
range. At the x = 1.33 end in particular the observed 
multiplicity is invariably about 0.1 less than the pre- 
dicted value of 6. Fig. 1 demonstrates the form of the 
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electron diffraction pattern normally observed from 
Bat.33Mgl.33Ti6.67O16 with the superlattice spots 
indexed on a hollandite lattice. When h + 1 = even 
the most intense superlattice peaks for k < 1 occur at 
k = ½+ e• and the less intense at k = ]+  e0 where e• = 
( 2 / m - 1 / 3 ) = 0 . 0 1 .  Superlattice peaks also form at 
k=½+eo  and 2+eo when h + l  is odd but eo~-0"01  

2 and the most intense peak is at k = 5. 
It was suggested by Cheary & Squadrito (1989) 

that the deviation from the 3bhou superstructure for 
x =  1.33 is related to the formation of antiphase 
domains. Microdomains in hollandites were first 
noted by Bursill & Grzinic (1980) and the concept of 
intergrowths of domains of 3bhox and 5bhot order was 
used to explain qualitatively the variation of the 
observed multiplicities between x = 1.2 and x = 1.33. 
The existence of antiphase domains in hollandites 
was first discussed by Fanchon, Vicat, Hodeau, Wol- 
fers, Tran Qui & Strobel (1987) in their study of 
Ba~.2Mg~.2Ti6.80~6. In this compound it was noted 
that large domains with a 5 bho~ superstructure contain 
smaller domains also with 5bho~ superstructures but 
shifted with respect to one another at the domain 
walls. We believe this is also the case in x = 1.33 
hollandites within 3bho, domains. In Bursill & Grzinic 
(1980) the ordered domains illustrated in the electron 
micrograph for an x = 1.33 specimen are regions of 
perfect 3bhot order typically 20 to 60 A in size in the 
tunnel direction. It is proposed that the superstructure 
in an x = 1.33 hollandite changes from the sequence 
Ba -Ba-® in one domain to ® - B a - B a  or B a - ® - B a  
in an adjacent domain. With antiphase domains 
- 5 0  A in length, the disruption to the 3bho~ periodicity 
at the boundaries between domains will be enough 
to reduce the multiplicity from 6 to the usual observed 
value of 5.80 to 5.90 in Bat.33Mgl.33Ti6.67Oi6. 

The presence of these antiphase domains indicates 
that the ordering of the Ba ions is incomplete. This 
situation is similar to that found in Cu3Au alloy which 
forms antiphase domains once the temperature drops 
below the order-disorder transition (Warren, 1969). 
The change from partial order to complete order 
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Fig. 1. A diagram of the [100] zone electron diffraction pattern 
from Bal.33Mgl.33Ti6.67016 hollandite showing the zig-zag pat- 
tern of superlattice lines. For a scheme of indexing based on a 
hollandite lattice, a perfect 3b superstructure would produce 
superlattice lines with k = 1/3 or 2/3. 

occurs through the growth of these domains. The 
similarity to Cu3Au implies that an order-disorder 
transition also exists amongst the Ba ions in Ba hol- 
landites. This has in fact proved to be correct and an 
order-disorder transition of the Ba ions has since 
been measured by us in Bal.33Mgl.a3Ti6.67016 at 
1100 (10) K. This was done by examining the intensity 
of the strongest X-ray superlattice line with increasing 
temperature and determining the temperature at 
which it disappeared. The formation and growth of 
the antiphase domains can be examined by analysing 
the position and breadth of the superlattice lines when 
a specimen is subject to different heat treatment pro- 
cedures. Figs. 2(a),  (b) and (c) are different parts of 
X-ray powder patterns from a single specimen of 
BaxMgxTis-xO16 (x ~- 1.33) at different stages in the 
ordering process. In the lower pattern in each of Figs. 
2(a),  (b) and (c), the specimen was cooled rapidly 
from 1230 K to room temperature over a 2 h period 
and only limited domain growth occurred. This shows 
as broadening of the superlattice lines relative to the 
hollandite lattice lines. The upper patterns in Figs. 
2(a), (b) and (c) correspond to the same specimen 
after being reheated to 1060 K (i.e. just below the 
transition temperature) and annealed for 160h to 
allow the domains to grow. As expected, the superlat- 
tice lines become sharper and they also shift to 20 
values corresponding to a larger multiplicity value 
(see Fig. 2c). Throughout the heat treatment the 20 
values and the relative intensities of hollandite lattice 
lines are substantially unchanged. 

The purpose of the present paper is to develop a 
diffraction theory for relating the observed multi- 
plicity of the superlattice peaks in an electron diffrac- 
tion pattern from Bal.33Mgl.33Ti6.67016 to the size of 
the antiphase domains and the structure at the boun- 
daries between the domains. This is essentially a 
one-dimensional problem as the multiplicity is given 
from the intensity distribution along the b* direction 
at each integral value of h and/.  The theory is general- 
ized to reflect the three-dimensional domain structure 
so that it can be applied to X-ray powder diffraction 
data. This will allow validity of the theory to be tested 
more rigorously through an analysis of the breadth 
of each superlattice line as well as its shift relative 
the perfectly ordered 20 position. 

Description of the antiphase domain model 

In the present analysis we have assumed substitu- 
tional disorder of the Mg/Ti  ions on the octahedral 
sites. Fanchon et al. (1987) found no evidence for 
ordering of these ions in single-crystal X-ray data 
from Ba~.2Mgl.2Ti6.8016 and noted that 12/m sym- 
metry does not predict any simple form of ordering. 
Cheary & Squadrito (1989) found that the ratio of 
Mg/Ti on each of the octahedral sites is different, 
but in each case the ions are substitutionally dis•r- 
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dered on their respective sites. Even though the 
occupancy of the Mg and Ti atoms is different on the 
two sets of octahedral sites there does not appear to 
be any long-range ordering of these ions. In this work 
the contribution of Mg and Ti to the superstructure 
reflections is assumed to be negligible. This being the 
case, the intensity distribution of the superlattice lines 
depends only on the Ba ions and the atomic coordin- 
ates of the ordered sequence of these ions and vacan- 
cies in the tunnels. Within each hollandite unit cell 
there are two tunnel sites with centres at 0,0,0 and 
1 1 1  ~,~,~. These sites are in separate but parallel tunnels 
which run in the y direction (i.e. the b axis). The 
Ba-Ba-® ordering within each tunnel results in the 
Ba ions being pushed slightly off centre in the tunnel 
direction. This arises from mutual electrostatic repul- 
sion between neighbouring pairs of Ba ions. Two 
structural constraints have been identified which con- 
trol the local ordering of the Ba ions and vacancies 
in hollandites. The first of these is that vacancies 
never occupy adjacent sites along a tunnel (Mijlhoff 
et al., 1985). Secondly, vacancies in adjacent parallel 
tunnels always occur in pairs and form unbroken 
corrugated layers parallel to the (010) plane (Fanchon 

et al., 1987). These rules mean that if a vacancy exists 
at 0,0,0 then the adjacent sites in the same tunnel at 
0,1,0 and 0 , -1 ,0  will be occupied by Ba ions. Also, 
in the adjacent tunnel one of the sites at either 1 1 ~,),~ 
o r  } ,  1 1 -~,~ will be vacant. 

In the present work we will classify the two types 
of vacancy pairing in adjacent tunnels as ~' pairs 
when the two coordinates are 0,0,0 and 1 , 1 ~,~,3 and ,~ 
pairs when these coordinates are 0,0,0 and ~ 3,-3,½. Six 
possible 3b supercells can be formed from these 
vacancies, three based on ~' vacancy pairs termed A, 
B and C cells and three based on ~ vacancy pairs 
termed A # ,  B #  and C #  cells. These are shown in 
Fig. 3. Each of these supercells is the same except 
for an origin shift or a twofold rotation about the b 
axis. As there are six possible supercells there will 
also be six possible types of antiphase domain. At 
the boundary between two domains the structure must 
still satisfy the condition that vacancies cannot exist 
as nearest neighbours in a tunnel. This automatically 
limits the way a changeover can occur at a boundary.  
Fig. 4(a) illustrates four possible single-layer boun- 
dary types going from an A-type cell to one of the 
other types. Within each domain the vacancy layers 
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Fig. 2. X-ray powder diffraction patterns from BaxMgxTis_xO~6 with x = 1.33 using Cu Ka radiation showing the superlattice lines 
between 20 = 10 and 35 °. In the upper pattern in each case the specimen was cooled rapidly from 1230 K and the superlattice lines 
are broadened due to the formation of  antiphase domains. In the lower pattern, the same specimen was subsequently annealed at 
1060 K for 160 h to produce well resolved superlattice lines. (c) is expanded in the 20 direction to show that annealing also produces 
a shift in the 20 values of  the superlattice lines, but no change in either the 20 position or the breadth of the lattice lines. 
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are separated by 3b, but at the boundary the separ- 
ation can be 2b, 2.5b, 3.5b or 4b depending on the 
cell types in the particular neighbouring domains. All 
the examples shown are single-layer boundaries. The 
problem with single-layer boundaries is that certain 
combinations of domain types cannot exist together 
without violating the constraint on nearest-neighbour 
vacancies. By having double-layer or multilayer boun- 
daries all possible types of adjacent domains can 
coexist. Starting from an A-type domain, a 2b+2b  
boundary layer produces an A ~  C change whereas 
a 2b+2.5b  results in an A ~ B #  change. In some • 

O 
instances a double-layer boundary may be energeti- aO 
cally more favourable than a single layer. In par- • 
ticular, the fact that very few Ba hollandites form • 
with more than 1.33 Ba/cell would suggest that three • 
or more consecutive Ba ions along a tunnel are aO 
unstable. The boundaries at which this occurs, namely • 
the 3-5b and 4b types, will therefore be the least • 
stable of the four possible types, and combinations 

BO based on 2b and 2.5b boundary types will be pre- 
ferred. • 

Until now we have only described domain boun- O 
daries that form parallel to the (010) plane. Fanchon A • 
et al. (1987) have also described boundaries that form 
perpendicular to the (010) planes. At these boun- • 
daries a changeover occurs from ~ to 1]' vacancy pairs 0 
or vice versa and the structure is shifted by +b/2 or A • 
-b/2 without the lateral continuity of the vacancy • • 
pairing in adjacent tunnels being broken. This is 
illustrated in Fig. 4(b) for a section of the structure A= B 
perpendicular to the (010) plane. Although boun- 2bBo.ndary 
daries with shifts other than +b/2 are possible, Fan- 
chon et al have discounted them either because vacan- 
cies occur as nearest neighbours or three adjacent Ba 
ions exist in a line within the same tunnel. As these 

presence of these boundaries, however, will broaden 
the superlattice spots perpendicular to the b* direc- 
tion. Electron micrographs of these boundaries in 
Bal.2o(MgTi)sO]6 do not show any strong planar habit 
and the boundaries are probably defined by a mixture 
of (100)/(001) and/or  (101)/(101) planes. When 
making general reference to boundaries on planes 
perpendicular to the (010) plane we will refer to them 
as (HOL)  boundaries. 
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boundaries are perpendicular to the (010) plane they 
have no direct effect on the k index of superlattice 
peaks. Also, as there is no change in the spacing at 
a boundary, there is no shift in the h or l index. The 
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Fig. 3. The six types of supercell in Bat.33Mgt.33Ti6.67Ot6. In A-, 
B- and C-type supercells the vacancy pairs are in positions 0,0,0 
and½ t t ,~,~, (1]' type). In A # ,  B #  and C #  supercells the vacancy 
pairs are in positions 0,0,0 and t t t ~ , -~ ,~ ,  (~  type). 
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Fig. 4. (a) Single-layer domain boundaries on (010) planes for 
the changeover from an A-type supercell domain to either a B-, 
C-, A#- or C#-type supercell domain. In general, the spacing 
at the boundary is Ab where A can be 2, 2.5, 3.5 or4; (b) domain 
boundaries on (100) planes defined by a shift in the structure 
of +b/2. 
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Derivation of intensity equations 

In fully ordered and partially ordered 
Bal.33Mgl.a3Ti6.67O16 the vacancy layers in the (010) 
planes are always separated by one or more Ba layers. 
Because of this it is easier to calculate intensities of 
the superlattice lines from the complementary struc- 
ture rather than the direct structure (i.e. the Ba ions 
in the hollandite structure are replaced by vacancies 
and the vacancies by Ba ions). According to Babinet's 
principle, the intensity pattern of the superlattice lines 
calculated in this way is identical to the pattern from 
the structure itself. Two forms of unit cell exist in the 
complementary structure; one with the ~ configur- 
ation of Ba pairs corresponding to ~ pairs of vacan- 
cies in the direct structure and the other with the ~" 
configuration of Ba pairs. For convenience, the origin 
in each case is shifted to the mid-point between the 
Ba ions giving atomic positions ~,~,1~ ~ and 4,1 4,1 41 

1 I ! _ _ l  for a 1]' pair and z , -~ ,z  and -z,¼, for a ~ pair. 
The structure factors of these cells, assuming integral 
values for h and l and a continuously varying k, are 

F~. = Fg = (--1)h+12f COS [(Tr/2)k] 

f o r h + l = e v e n  (2a) 

F l t=  - F ~  = (--1)h+'2f sin [(Tr/2)k] 

f o r h + l = o d d .  (2b) 

In the later intensity calculations these structure fac- 
tors are expressed in general terms as F = IF[exp ( j¢)  
where the phase ~ = 0 or rr depending on h + l and 
the type of pairing. This result implies that a domain 
structure without a boundary layer will produce 
broadened superlattice reflections only when h + l is 
odd. For this condition the structure factors in adja- 
cent domains differ in phase by 180 ° as in CuaAu. 
With reflections having h + l = even, the structure fac- 
tors in all domains are the same. The fact that all 
X-ray superlattice lines in hollandites are broadened, 
not just lines with h + l - -odd ,  indicates that a phase 
change must also occur in reflections with h + l even. 
For (010) boundaries this arises from a boundary 
layer with a spacing other than 3bhol. Across (HOL) 
boundaries the phase change at the boundary arises 
from a shift in the structure of ±b /2  and whether or 
not there is a phase change 0 or 7r in the structure 
factors on either side of the boundary. The problem 
here is to develop a diffraction theory which 
accommodates a variable spacing between domains, 
a phase change in the structure factor and a different 
boundary model across (010) compared with (HOL) 
planes. The mathematical technique adopted here 
follows the general approach of Lifschitz (1937) 
which has been adapted to the conventional antiphase 
domain problem by Cheary & Grimes (1972). In this, 
the amplitude scattered by a crystal with ordered 
domains is calculated as the sum of the contributions 

from all the domains before conversion to an 
intensity. To illustrate how the different boundary 
models affect the intensity distribution, the calcula- 
tions are carried out in three parts: (a) the calculation 
of I (k)  at fixed h and l to demonstrate the effect of 
(010) boundaries alone; (b) the calculation of I(h)  
and I (1) at fixed k to demonstrate the effects of (HOL) 
boundaries; (c) the calculation of the intensity func- 
tion l (q)  across an hkl diffraction spot in the direction 
of the reciprocal-lattice vector d*=  h a * + k b * +  lc*, 
where q = (2 sin 0 ) / h -  1/d, to demonstrate how all 
three boundary types can be incorporated into the 
calculation. The intensity function I (k)  is used to 
interpret the shift of the superlattice lines in electron 
diffraction patterns. The intensity function I(q) is 
used to interpret the shifts and the broadening in the 
powder diffraction profiles and identify the propor- 
tions of each boundary type and the (HKL) planes 
they form on. 

( a ) Calculation of  I ( k ) 

Consider a crystal with M + 1 domains, numbered 
0 to M, and let the ith domain have Ri + 1 vacancy 
layers at integral coordinates in the b direction Ni, 
N i+3 ,  N ~ + 6 , . . . u p  to Ni+3Ri (see Fig. 5a) where 
N~ corresponds to the position of the first vacancy 
layer with respect to an origin. The thickness of this 
domain is 3Rib in the b direction. The amplitude 
A~(k) scattered by the ith domain as a function of a 
continuously variable Miller index k, at particular 
integral values for h and l, can be expressed as a 
geometric sum given by 

R i 

Ai(k) = lFl exp (j~o,) ~ exp [27rj( N~ + ar)k] 
r = O  

= IFI exp  ( j~ , )  e x p  {2~rjN, k} 
× {1 - e x p  [67rj(R, + 1)k]} 

x [1 - exp (67rjk)] -1 (3) 

where [F[ exp (j¢~) is the structure factor for the ith 
domain. When h + l  is even, ¢i is the same in all 
domains and has the value 0 or ~r depending on the 
value of k [see (2)]. When h + l is odd, Cg will also 
be 0 or ~ depending on the value k, but if domains 
with ~'-type vacancy pairs have ~ -- 17- then domains 
with ~- type vacancy pairs will have qi--0.  Con- 
versely, when ~o~ = 0 for the 1]" type then ~o~ = 7r for 
the ,IJ, type. Summed over a whole column of M + 1 
domains in the b* direction the total amplitude A(k)  
scattered by the crystal is 

M 

A ( k ) =  E IFI exp (jq>,) 
i = 0  

x exp ( Z'rrjN~k ) {1 -  exp [ 6"n'j ( R~ + 1)k]} 

× [1 - exp (67rjk)]-'. (4) 
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The intensi ty  func t ion  I(k)  for  this co lumn  of  
d o m a i n s  will be 

/ ( k ) = A ( k ) A * ( k )  
M M 

=IFI 2 E E exp[-j(q~.-q~,)] 
i = 0  n = 0  

x exp[-27rj( N . -  Ni)k] 

x {1 - e x p  [6 rrj(R~ + 1)k]} 

x { 1 - e x p  [ - 6 ~ r j ( R .  + 1)k]} 

x{[1-exp(6~rjk)][1-exp(-6~rjk)]}  -1. (5) 

By i m p l e m e n t i n g  the  subs t i tu t ions  n = p + r a n d  i = p 
the intensi ty  can be expressed  as the sum of  three  
terms:  

I(k)  = K ( / o +  11 + 11") (6) 

where  

and  

K = I FI2{[ 1 - exp (67rjk)][  1 - exp (-67rjk)]}-' 
M 

Io = Y. {1-exp[-6~r j (Rp+l)k]}  
p = 0  

x {1 - e x p  [67rj(Rp + 1)k]} 

M M - r  

I1 = E E e x p [ - - j ( ~ p + r - - ~ p ) ]  
r = l  p = O  

xexp  [-27rj( Np+r- Np)k] 

x { 1 - e x p  [ -67 r j (Rp+ .  + 1)k]} 

x { 1 -  exp [67rj(Rp + 1)k]}. 

The pos i t ion  Np of  the first vacancy  layer  in the 
p th  d o m a i n  can  be expressed  as a recur rence  re la t ion,  

Np = Np_l q- Au_l q-3 Rp_ 1 
p--1 p -1  

= ~. A,+ ~. 3Ri 
i = 0  i = 0  

(7) 

where  Ai is the spac ing  be tween  the ith and  (i + 1)th 
domains .  Consequen t ly ,  the  differences Np+r-Np 
and  p p + r - ~ p  can be expressed  as 

a n d  

p+r-1  p + r - I  

Np+r-Np= E A , +  E 3R, 
i=p i=p 

p+r--I 

%+r - % = ~ Zl~oi 
i=p 

where  A~oi is the phase  dif ference be tween  the struc- 
ture fac tor  o f  the ith a n d  ( i +  1)th domains .  W h e n  
the te rm N p + r - N p  is subs t i tu ted  back  into (6), l (k)  
can be expressed  in terms o f  averages  re la ted  to 

d o m a i n  size d is t r ibut ion  a n d  the d is t r ibut ion  o f  phase  
changes  at the  d o m a i n  boundar i e s .  For  the  mode l  
deve loped  here  we define two terms D and  S rep- 
resent ing  these  averages  over  the crystal ,  

D=(exp[ -67r j k (R+l ) ] )  and  S = ( e x p ( - j ~ ' ) )  

(8) 
where  ~" = 2rrk (A - 3) + Aq~ = phase  change  be tween  
the end  o f  one d o m a i n  and  the start  o f  the  next  
domain .  To inc lude  D a n d  S in the ca lcu la t ions  and  

l 
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Fig. 5. (a) A column of domains in the b direction showing the 
y coordinates of the first and last vacancy layers in a domain. 
In the ith domain the first vacancy pair is at y-- Nib and the 
last one at (Ni +3R~)b, where R~ + 1 is the number of vacancy 
layers in the ith domain. The spacing of the vacancy pairs at 
the boundary between the ith and (i+l)th domains is A,b. 
(b) A row of domains in the a direction. In the ith domain there 
are R, + 1 vacancy pairs between coordinates x = Nia and x = 
(Ni + R,)a. 
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reduce the intensity equation to a manageable form 
we need to make a number of assumptions: 

(i) the crystals are large and incorporate a large 
number of domains; 

(ii) there is no correlation between sizes of adja- 
cent domains so that 

exp -67rj 5-'. (R, + 1) = Dr; 
i = 1  

(iii) there is no correlation between types of boun- 
dary layer in adjacent boundaries so that 

(exp  ( - J i ~  1 ~'i)) = St; 

(iv) there is no correlation between the boundary 
type and the domain size. 

With these assumptions Io and I~ can be expressed 
in terms of S and D, 

KIo = [ (M + 1)IFI2/4 sin 2 37rk][(1 - D ) + ( 1 -  D*)] 

and 

M 

KI,=(lF[2/4sin2 37rk) E ( M +  l - r )  Sr 
r = l  

× [2D r - D r-I  _ D r + l ] .  

If the antiphase domains are small in relation to the 
crystal size then D r will decrease to 0 rapidly with r 
and D M=O. Over the range of r for which D r is 
significant, ( M  + 1 -  r) will be more or less constant 
at M + 1. Each summation then becomes a geometric 
progression in which the terms in D M = 0. With large 
crystals we can also make the substitution M - M + 1 
and (6) reduces to the relatively simple equation 

I( k) = ( MIFI2/4 sin 2 3rrk) 

x[(1 - D)(1 - S) / (1 - SD) 

+ ( 1 - D * ) ( 1 - S * ) / ( 1 - S * D * ) ] .  (9) 

To take this equation further we need to consider 
the relationship between D and the probability of 
different size domains PR where R is the number of 
layers in a domain in addition to the zeroth layer. 
The model used here to determine the form of PR is 
similar to that developed by Lifschitz (1937). We have 
assumed that in going from the ith to the ( i+  1)th 
vacancy layer the probability of the spacing being 
different from 3b is a constant O~ b which is indepen- 
dent of position. Given that a spacing other than 3b 
defines a domain boundary,  the probability PR of R 
layers in a domain in addition to the zeroth layer is 
given by 

PR = O l b ( 1 - - O l b )  R, R>-O" (10) 

The average domain size To~0 in the tunnel direction, 
in terms of the mean number of layers (R) in a domain 

and the mean number of layers C A) at the boundaries, 
will be 

To~o= b(3 (g )+(A) )  

=3b[(1--ab)/ab+(A)/3]-----3b/ab (11) 

assuming C A) is close to three hollandite layers. On 
this basis, D and the intensity equation I (k )  along 
the k direction are given by 

oo 

D=Otb ~ (1--ab)  g exp[ -6"a ' j (R+l )k]  
R = 0  

= ab exp (-67rjk) (12) 
[ 1 - ( 1  - ab) exp (-67rjk)] 

l (  k) = ( MIF[2/4 sin 2 37rk) 

x [[ 1 - e x p  (-67rjk)](1 - S) 

x {[ 1 - e x p  (-6zrjk)]  

+ ab exp (-67rjk)(1 - S)} -1 

+ [ 1 - exp (+6-n'jk) ]( 1 - S*) 

x {[1 - e x p  (+6zrjk)] 

+ ab exp (+6zrjk)(1 - S*)}-1]. (13) 

Further simplification of (13) can be achieved by 
redefining some of the terms, namely by putting Ob = 
1 --S and Xb = 1 --exp (-6¢rjk) to give I (k )  as 

I(k)= MIFI2(~,b + ~,~- ab~b~'b*) 
x [4  sin z 3~k--ab(X*~,~ + XbOb)+ a 2~'b~*] -~. 

(14) 

To convert this equation into an actual intensity distri- 
bution we need to know the form of S, but to do this 
we need a model to describe the boundary layer 
between domains. In general, four types of boundary 
are possible corresponding to a spacing A = 2, 2.5, 
3.5 or 4 layers so that with the assumption that the 
proportion of each type of boundary throughout a 
crystal is f2, f2-5, f3-5 and f4 and that Y~f = 1, then S 
is given by 

S = f 2  exp (27rig)+ (--1)h+lf2.5 exp (Trig) 

+ (--1)h+'f3.5 exp (-rrjk) 

+ f4 exp (-2"rrjk ). (15) 

The ( -1 )  h÷l terms in (15) arise because at boundaries 
with A = 2.5 or 3.5 the vacancies change from ~' pairs 
to ,~ pairs (or vice versa) which for lines with (h + 1) -- 
odd corresponds to a change from F to - F  (or vice 
versa) and ~" = + 7r or - 77". 

( b ) Calculation of l ( h ) [or l ( l ) ]  

To calculate the intensity distribution I (h)  of the 
superlattice lines as a function of h we need to con- 
sider a line of cells consisting of vacancy pairs along 
the a direction as shown in Fig. 5(b). In this model 
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as in the earlier model there are M + 1 domains num- 
bered 0 to M and in the ith domain the vacancy pairs 
have x coordinate from Ni to N~ + Ri where Ri + 1 is 
the number of vacancy pairs in the ith domain. A 
domain boundary is defined by a shift in the b direc- 
tion of y=½ or -½, but there is no change in the 
spacing at the boundary. The phase difference ~" 
between structure factors either side of a boundary 
arises from two effects: 

(a) the changeover from 1]' to ~ vacancy pairs (or 
vice versa) which gives ~" = +Tr for h + l =  odd and 
~" = 0 for all other reflections and 

(b) the shift in origin o fy  = +½ which adds a further 
+Trk to ~'. 
For this problem the intensity distribution can be 
derived in exactly the same way as I (k)  earlier but 
summing along the a or c directions in steps of 1 unit 
cell at a time. Under this condition, l (h)  will be given 
by 

I ( h ) =  (MIFI2/4 sin 2 ~h)[(1 - D)(1 - S)/(1 - SD) 

+ ( 1 - D * ) ( 1 - S * ) / ( 1 - S * D * ) ]  (16) 

where D = (exp [ -27r j (R + 1)h]) and S = 
(exp (- j¢))  = ½ (-1)h+l[exp (jTrk ) + exp (-jTrk ) ]. With 
the assumption that the probability of an (HOL) 
boundary occurring between any two vacancy pairs 
is a,, and the probability PR of R pairs in addition 
to the zeroth pair is PR = aa (1 -- ~ ) R  then the mean 
domain size in the [100] direction T~ = a ( R + l ) =  
a/a~. The simplified equation for the superlattice 
lines (and not the lattice lines) in which q~,, = 1 -  S 
and Xa = 1 - e x p  (-27rjh) is 

I ( h ) =  MlFl2(q~a + ~ * -  aa@~@*) 

2 ~ - 1  x[4  sin E 7rh - a~(X*~b* + Xaq~) + a~b~q& ] 

(17) 

Based on the phase changes given above, the term ~G 
for these boundaries is real and given by q~ = qJ* = 
[1--(--1) h+l COS 7rk]. Also, close to the centre of the 
superlattice line, h can be put as h = n + eh, where n 
is an integer, and sin E rrh--~ (TrSh) 2. By incorporation 
of these results into (17), the intensity distribution 
I(eh) becomes Lorentzian centred on an integral 
value for h, 

I(eh) = M I F I Z G ( 2 - a a G )  

x[(l_aa~O,,)(27reh)2+ 2 2-1 , , . q , . ]  . ( 1 8 )  

In this instance there is no shift in the peak value off 
the h = integer condition, but the profile is symmetri- 
cally broadened. In an X-ray powder pattern only 
those lines with k'-" 2/3 and h + l = odd number or 
k-~ 1/3 and h + l = even number are intense enough 
to be detected. In each of these cases qJ~ = 1/2 and 
the full width at half-maximum intensity 6h (or 
apparent particle size Tapp) is given by 

6h = Tapp-I __~ ot~/27r(l_ad2)UE. (19) 

(c) Calculation of I (q)  

The intensity distribution across the hkl powder 
diffraction line is given by considering the average 
intensity scattered by the column of vacancy pairs 
(or cells) perpendicular to the (hkl) plane. By adding 
up the amplitude from each domain in this column 
in the same way as in the previous derivations, an 
intensity equation I (Q)  analogous to (14) and (17) 
can be formulated but expressed this time in terms 
of the scattering vector Q [ =2(s in  0)/A] and the d 
spacing of the (hkl) plane, 

I ( Q ) =  MIFI:  (q,a + q,* - C, dq, a~0*) 

x[4  sin E 7rQd-ad(X*d~b*d + Xdlltd )'4- O~2 I]tdllt d~] - 1  

(20) 

where X d = l - e x p ( - 2 7 r j Q d ) .  The mean domain 
thickness in this direction Td = d/ad,  where ad is the 
probability of a domain boundary between adjacent 
cells. The term qJd = 1 -- S where S = exp ( - j s  r) and ~" 
is the phase change at a domain boundary which 
could be any one of the two possible types [i.e. (010) 
or (HOL)]. It is worth remarking that I (Q)  can be 
converted to I (k )  by putting Q = k /b  and d = 3b or 
to I(h)  by putting Q =  h/a  and d = a. 

The intensity distribution about an individual peak 
can be developed by putting Q = q + 1/d and dividing 
qJd into its real and imaginary parts, ~0d = G +jqJ,- In 
the vicinity of the peak maximum where q is small 
sin 7rqd = rrqd and the intensity function I(q)  will be 
given by 

l ( q ) =  MlFlZ[2G-- ad( q,2 + qjE)] 

X [(27rqd)2(1 - adG) 
2 2 +47rqdadtbi+ad(~br+~b2)] -~. ('21) 

Further, on the assumption that G and qJi are more 
or less constant across a profile, l (q)  can also be 
expressed as a Lorentzian, 

I ( q ) = A q / [ ( q - q o ) 2 + ( 3 / 2 )  E] (22) 

in which qo, the shift from the ideal 3b hollandite 
superstructure in 1/d units, and 6, the full width at 
half-maximum intensity in 1/d units, are given by 

qo = - qicra / 2 rrd (1 - Crdqr) 

and 

62 1/ 2 = Tapp=(~,.ad)2/(,n'd)E(1--OZd~b,.)--~b,.ad(Eqo) 2. 

(23) 

It should be noted that the shift of the diffraction 
peak qo is given by the value of Co, the shift in the 
[010] direction, resolved in the direction of d* and 
converted to 1/d units. Further consideration will be 
given to the behaviour of l (q)  later when analysing 
the powder diffraction data. 
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Table 1. A comparison of the observed and calculated shifts eo of the superlattice peaks relative to the hollandite 
lattice indices k = 1/3 and k = 2/3 for the antiphase domains with boundary spacings A = 2, 2.5, 3.5 and 4 layers 

The  ca l cu l a t ed  va lues  are ba sed  on  e q u a t i o n  (20) wi th  a b = 0 . 2  (i.e. m e a n  d o m a i n  size =45/~ , ) .  

h + I = even  h + 1 = o d d  

eo eo l ( k  ~- 1/3)  eo eo l ( k  ~- 1/3)  

( k ~  1/3)  (k  = 2 / 3 )  I ( k = 2 / 3 )  ( k =  1/3)  (k --- 2 / 3 )  I ( k = 2 / 3 )  

Observed: +0.01 ~+0.01 >> 1 - - 0 . 0 1  ~ -0 .01  << 1 
Calculation 

A p 
2 -2r r  0.012 -0.013 2.7 0-012 -0.013 2.7 
2-5 - l r  0"010 0.012 11"4 -0-012 -0"010 0"1 
3"5 +~" -0.010 -0"014 10 0.014 0"010 0-1 
4 +2rr -0.014 -0"013 3"3 -0"014 -0"013 3"3 

Analysis of experimental data 

1. Interpretation of electron diffraction results 

The experimental electron diffraction data for 
B a l . 3 3 M g l . 3 3 T i 6 . 6 7 0 1 6  (Bursill & Grzinic, 1980) may 
be summarized as follows: 

(a) superlattice peaks occur at k = l / 3 + e o  and 
2/3 + eo where e0 = 0.006 to 0.012 for h + l = even and 
eo = - 0 . 0 0 6  to -0.012 for h + l = odd; 

(b) for h + l = o d d ,  Imax(k=2/3)>>Imax(k~-l/3) 
but for h + 1 = even, I m a x ( k  --~ 2/3) << I m a x ( k  = 1/3); 

(c) the mean domain size along the tunnel direc- 
tion is in the vicinity of 40-50 A. 

To explain this behaviour we need to examine how 
different boundary models affect the intensity distri- 
bution I(k)  given by (14). For this function to peak 
at exactly k = 1/3 or 2/3 the term 0b must be real. 
Alternatively, for the peak to be shifted off this condi- 
tion, 4'b must be complex. On this basis a domain 
structure consisting of equal proportions of all four 
types of boundary spacings A would not produce a 
shift in the superlattice line as S [defined in (15)] 
would be real. Despite the large number of possible 
boundary models based on differing proportions of 
each boundary spacing, it is possible to explain the 
essential characteristics of the superlattice peaks in 
terms of a single boundary type. 

When all the (010) domain boundaries have the 
same spacing, the function S contains one term S = 
y exp (- jpk)  where p = 2rr(A -3 ) .  The term y = 1 for 
all models with h + l = even and only becomes -1  
when A = 2.5 or 3.5 and h+  l=  odd. The intensity 
function I ( k ), 

I(k)  =4Mf2(1--eeb)(1--3/cos pk)(1 + 3/cos rrk) 

x {4 sin 2 (3zrk)[1 - a b ( 1  - -  3/COS pk)] 

+ 23/ab sin 6zrk sin pk+2a~(1 - 3/cos ok)} -~ 
(24) 

where f is the atomic scattering factor of Ba. When 
this function is plotted as a function of k, from 0 to 
1, two peaks are evident at k-~ 1/3 and k -  2/3. Each 
model has its own characteristics but only the model 

with a boundary spacing A = 2.5 (i.e. p = -17-) accords 
with the observed characteristics. This is highlighted 
in Table 1 which compares the observed diffraction 
behaviour with the relative intensities and shifts of 
the diffraction peaks calculated from (24) for a mean 
domain size of - 4 5  ~ (i.e. ab = 0-2). The actual peak 
shifts given by the A ---- 2"5 model agree quantitatively 
with observations of Bursill & Grzinic (1980) in that 
a domain size of 45 A produces a shift in k of 0.01 
(i.e. a multiplicity m =5.83). It should be noted, 
however, that the peak shift at a fixed h + l is mar- 
ginally different for the weak and strong superlattice 
lines. An exact relationship between the peak shift 
and the mean domain size cannot be derived. An 
approximate equation, however, can be derived by 
putting k in (24) as k = ko+ e where ko = 1/3 or 2/3 
and e is small (i.e. 0.02 or smaller). Under these 
conditions the small-angle approximation sin 2 3 zrk -~ 
(3ere) 2 may be implemented, and provided sin pk ~- 
sin pko and cos pk ~-cos pko over a peak, then the 
profiles are Lorentzian, 

I (e)=Ak/[(e- -eo)2+(6/2)  2] (25) 

where eo is the shift of the peak maximum relative 
to ko = 1/3 or 2/3 and 6 is the full width at half- 
maximum intensity (FWHM) in Miller index units. 
For the A --2.5 model the peak shift eo obtained by 
this approach is accurate to within a few percent for 
the strong superlattice lines and given by 

( - - 1 ) h + l o ~ b  sin zrko 
(26) 

e°=67r{1--ab[1--(--1)h+l cos 7rko]}" 

It should be emphasized that the presence of only 
zl =2.5 boundaries makes sense. In the first place, 
the only commensurate superstructures in hollandites 
are those with either a 2-5b or a 3b spacing between 
the vacancy layers. On this basis boundaries with 
A =2.5 will be preferred energetically over other 
boundary types and the variation in stoichiometry at 
the boundary will be minimized. Nevertheless, 
because a 2.5b boundary contains one less Ba ion 
than a 3b layer, the total tunnel occupancy of any 
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hollandite containing antiphase domains will always 
be less than 67% (x =4 /3 ) .  For an average domain 
structure consisting of 5 ×3b supercells and a 2.5b 
boundary layer (i.e. an average domain size -~47/~), 
the occupancy will be 23/35=65.71% or x =  1.314. 
This result is reflected in the preparation of samples 
o fx  = 1.33 hollandites which invariably contain weak 
second-phase diffraction lines in the X-ray powder 
pattern which we have not been able to identify. 

2. Analysis o f  powder diffraction data 

In the two powder diffraction patterns illustrated 
in Fig. 2 the superlattice lines are broadened relative 
to the lattice lines. The superlattice broadening in the 
annealed sample is less than the quenched sample 
and there is a difference in the peak positions of the 
two sets of superlattice lines. Heat treatment has no 
significant effect on the breadth or position of the 
lattice lines. The purpose of this section is to use (23) 
to explain the observed broadening 6 of the superlat- 
tice lines. In the following analysis it is assumed that 
boundaries form on (010) and (HOL) planes and that 
all the (010) boundaries consist of a 2.5b boundary 
layer. The function S for an hkl line with a combina- 
tion of boundaries will depend on the proportion of 
each type of boundary,  

S = (exp (j~')) = rSo lo+(1 -  F)SHoL 

=(--1)h+~[F exp ( r r j k ) + ( 1 - F )  cos rrk] 

(27) 

where F is the proportion of (010) boundaries along 
a line perpendicular to the (hkl) plane. F = 1 in the 
[010] direction as all the boundaries are (010) type 
but in any perpendicular [h0k] direction F = 0 as all 
the boundaries are (HOL) type. In general, qJd will 
be given by 

~ba = 1 - S = @r +j~P, 

= [ 1 - ( - 1 )  h+~ cos z r k ] - j F ( - 1 )  h+~ sin zrk. (28) 

As the detectable superlattice lines in the powder 
pattern are all of the type h + l = even and k --- 1/3 or 
h + l = o d d  and k- ' -2 /3  then ~0r=l/2 and qJi= 
--1-'(--1)h+~3~/2/2. The shift qo and the FWHM 6 given 
in (23) become 

(-1)h+tF3trzcea 
qo = 47rd(1 - aa/2)  (29a) 

and 

62 1 a ]  
- TZp-----p-(Zrrd)2(l_aa/2 ) 2aa(qo) 2 (29b) 

where d / a  d is the mean domain size perpendicular 
to the (hkl) plane. For an 0k0 superlattice line F = 1 
and there is no contribution from (HOL) boundaries 
to q0 or 6. The shift in the k value, e0, from the ideal 

superlattice value given by (26) and the apparent 
particle size from (29b) for 0k0 lines simplify to 

and 

I~ol = 0 - 0 4 5 9 a b / (  1 - ab/2) (30a) 

1 ab(1 --2Ceb) 1/2 
6-- Zap-----p-(27rd)(l_Ceb/2 ) (30b) 

where the mean domain size in the [010] direction is 
given by 3b/ab.  

Two sets of X-ray powder data have been collected 
from a single specimen of BaxMgxTis_xO~6 (x -~ 1-33) 
to test the validity of the above equations. The first 
data set was collected from a freshly prepared speci- 
men with extensively broadened superlattice lines 
which was cooled from 1230 K to room temperature 
over a 2 h period. The second data set was collected 
after annealing the specimen at 1060 K (i.e. just below 
the order-disorder temperature) for 160 h. As indi- 
cated earlier in Fig. 2, this heat treatment shifts the 
superlattice lines, reduces their breadth but does not 
have any significant effect on the lattice lines. The 
specimen used in this study was a 25 mm sintered 
disc prepared by solid-state reaction of TiO2, MgO 
and BaCO3 as described in Cheary & Squadrito 
(1989). In each case the X-ray powder data were 
collected by step scanning from 20 = 10 to 20 = 35 ° 
with 0.01 ° steps for 70 s step -1 on an Apex diffrac- 
tometer using a Philips lon G fine-focus X-ray tube 
with a Cu target (A = 1.5406 A). To use (29) and (30) 
on the recorded X-ray count data it was necessary to 
correct the diffraction profiles for instrumental effects, 
the emission profile and particle size. This was done 
using a fitting program developed in this laboratory 
(Cheary & Coelho, 1992) which convolutes a Lorent- 
zian profile with an instrumental profile. The param- 
eters for the instrumental profile of the diffractometer 
were determined from a reference powder specimen 
of MgO with a crystallite size of 2 ~m by fitting a 
convolution of analytical profile shapes for axial 
divergence, fiat specimen error, receiving-slit width, 
target size, specimen tilt and the Cu Ka emission 
profile (Wilson, 1963; Klug & Alexander, 1974). 
Observation under a JEOL 35C scanning electron 
microscope indicates that the hollandite specimen 
used in this work possesses small crystallites - 3 0 0 0 / ~  
and as such the lattice lines are slightly broader than 
expected. To determine the contribution of the anti- 
phase domains to the broadening of the superlattice 
lines, it was assumed that the FWHM of the Lorent- 
zian profile convoluted into the instrumental profile 
arises from particle size only in the lattice lines and 
particle s ize+ant iphase  broadening in the superlat- 
tice lines. In the fitting program, the width of the 
Lorentzian FWHM20 is expressed in terms of an 
apparent particle size Tapp using the relation 
FWHM20 = ~/Tapp cos 0 rad. The apparent particle 
size T d°m in ~ arising from antiphase domains alone --app 
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Table 2. The measured peak 20 values, shifts eo of  the k index from the commensurate values and the corrected 
apparent particle sizes T d°m for the superlattice lines from Bax(Mg/Ti) hollandite with x = 1.33 (a) cooled A a p p  

rapidly from 1230 K to room temperature and (b) after further annealing at 1060 K for 160 h 

The lattice parameters obtained for this specimen are a = 10.249 (7), b = 2.978 (2), c = 9.915 (7) A and/3 = 91.05 (2) ° using A = 1.5406/~. 

( a )  R a p i d l y  c o o l e d  s p e c i m e n  (b )  A n n e a l e d  s p e c i m e n  

om T d°m ( A )  h k 1 20 (o) E 0 TC2app (]~) 20 (o) E0 --app 

0 k c 0  10"506(10) 0"0207(3) 478(60) 10"430(6) 0"0181(2) 1110(130) 
1 k L 1 16"231 (15) 0"0238 (8) 16"167 (3) 0"0193 (2) 

147 (10) 3920 (1200) 
1 k L i 16"391 (15) 0"0227 (8) 16"326 (3) 0"0192 (2) 
1 k H 0 21 "078 (6) -0"0218 (2) 225 (10) 21 "146 (3) -0"0195 (1) 865 (70) 
0 k H 1 21 "210 (6) -0"0216 (2) 21 "280 (5) -0"0189 (2) 
3 k .  0 32"498 (4) -0"0239 (2) 32"582 (3) -0"0206 (1) 

147 (12) 1310 (140) 
0 kH 3 33"229 (4) -0"0245 (2) 33"314 (2) -0"0197 (1) 

is equivalent to 1/6 in (29) and (30) and for each 
superlattice line is given by 

1/Td°m = 1/Tsuperlattice - -  1 / T  lattice A a p p  - - a p p  - , '  - - a p p  (31) 

w h e r e  Tsuperlat t ice i s  the apparent particle size of the - - a p p  

superlattice line and Tlattice is the apparent particle A a p p  

size of a nearby lattice line. 
In the present analysis only the strongest superlat- 

tice lines have been analysed. These are the 0kL0, the 
lkL1/lkL1 doublet, the lkHO/Oknl doublet and the 
3knO/Okn3 doublet where kL = 1/3 and k s = 2 / 3 .  In 
the annealed specimen the doublets can be resolved 
into two lines but in the rapidly cooled specimen 
these lines are very broad and cannot be resolved. In 
the evaluation of the profile parameters various con- 
straints were incorporated irl the fitting procedure to 
ensure that the results were physically realistic: 

(i) the relative integrated intensities of all the peaks 
are the same in each data set; 

(ii) the 20 separation of the peaks in the superlat- 
tice doublets are the same in the annealed and freshly 
prepared specimens; 

(iii) in each superlattice doublet the apparent par- 
ticle size is the same for each peak; 

(iv) the apparent particle size of the same lattice 
lines in each data set are the same. 

The results of this fitting are summarized in Table 
2 which gives the peak 20 values of the superlattice 
lines along with the corrected apparent particle sizes 
TOom arising from antiphase domains and the shift app 

e0 of the k index of these lines from their ideal values 
(i.e. 1/3 or 2/3). The eo values were obtained by 
examining the difference in 1/d 2 values between each 
superlattice line and a nearby lattice line in order to 
minimize errors arising from specimen surface dis- 
placement and zero error. In this way it is not 
necessary to know any of the monoclinic lattice par- 
ameters other than b. For example, with the lkL1 line, 
eo = kL -- 1/3 and kL was determined using the relation 

k~/b2 = 1/d2,kL 1-1/d2ol  . (32) 

Even after many days of annealing just below the 
order-disorder  temperature, the superlattice lines still 

display some diffraction broadening relative to the 
lattice lines. This indicates that domains of some form 
still exist within the annealed sample. In both sets of 
results in Table 2 the superlattice lines are shifted 
from k = 1/3 or 2/3 and the magnitude of this shift 
is relatively uniform for the lines that are readily 
detected. As expected both the shift and the breadth 
of the superlattice lines are greater for the rapidly 
cooled specimen and on annealing the 20 value of 
lines with k =  1/3 decreases whilst the 20 value of 
lines with k~-2/3  increases. The magnitude of the 
movement induced by annealing is typically between 
0.06 and 0.08°20. When averaged over all the lines 
in Table 2 the change in ]e0] induced by annealing is 
- 0 .004 (1 ) .  

One check on the diffraction theory developed here 
is to compare the observed change in ]eo[ on annealing 
with the change calculated through (30a). To do this 
it is necessary to determine the ct b values for the 
annealed and rapidly cooled specimens. For all the 
superlattice lines except the OkLO line, the relationship 
between T d°m and o~ b is complicated and dependent A a p p  

on the proportion of (HOL) boundaries accompany- 
ing (010) boundaries. The breadth of the OkLO line is 
only affected by (010) boundaries as the (OkLO) plane 
is perpendicular to all the (HOL) boundary planes. 
The value of O: b can therefore be determined directly 
from T °°m through (30b). Accordingly, the values of - - a p p  

O~ b for the rapidly cooled and annealed specimens 
are 0.127 (19) and 0.052 (7), respectively. The corre- 
sponding values of ]e0] calculated from (30a) using 
these O~ b values are 0.0062 and 0.0025. The change 
in leo] calculated in this way is 0.0037 which agrees 
well with the observed value of 0.004(1). 

Although the observed and calculated changes in 
]eol agree well, there is a large discrepancy between 
the absolute theoretical and observed values for ]eol. 
For the rapidly cooled specimen the average ]e0] is 
-0"023,  which is significantly larger than the calcu- 
lated value of 0.006. Even for the annealed specimen 
the observed ]e0] is still -0 .019 .  The extent to which 
the observed ]eo] values change with the line breadth 

T d°m suggests that [eo] will still be -0 .016  in the o r  1 / ~ a p p  
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Table 3. The shifts qo and l eo~l for the superlattice lines from the rapidly cooled and annealed specimens along 
with the mean domain size Td perpendicular to the diffracting plane 

The shift t e rms  are measu red  relative to the reference 20 posi t ion for  each line at which the diffraction line b r o a d e n i n g  arising f rom 
domains  appea r s  to be zero. 

( a )  Rapidly  cooled  spec imen  (b) Annea led  spec imen  

qo x 10 4 q0 x 104 

(A-') I~0"I rd=d/o~ a (A) (A-') I=o*1 
0 kt. 0 15.2 0.0048 54 (7) 6.7 0.0021 
1 kL1 
1 kL T 7"6 0"0037 25 (2) 0.4 0"0002 

1 kH0 
10"4 0-0033 34 (2) 2"7 0-0008 

Okn 1 
3 k H 0  

10"3 0"0049 24 (2) 1"2 0-0006 
0k  n 3 

T, = dla, (k) 
123 (15) 

610 (190) 

132(10) 

203 (22) 

absence of line broadening (i.e. when 1 / T  d°m = 0 ) .  - / - -app 

On the basis of the antiphase domain model presented 
here an ideal specimen of fully ordered 
Bal.33Mgl.33Ti6.67O16 would give l eol =0.  Con- 
sequently, the absolute shift l eol of the observed super- 
lattice lines cannot be accounted for by antiphase 
domains alone; other factors must play a part and in 
this instance the most likely cause is the formation 
of an intergrowth of 3b domains with a small propor- 
tion of 5b domains (Bursill & Grzinic, 1980). Accord- 
ing to the intergrowth model of Mijlhoff et al. (1985) 
reflected by (1), the minimum leo] --- 0.016 corresponds 
to a composition of ---1.30Ba/cell rather than 
1.33 Ba/cell. The presence of 5b domains in addition 
to 3b domains casts some doubt on the validity of 
using the present theory on the current powder data. 
We contend, however, that as most of the domains 
in the specimen are probably 3b domains the theory 
will still be good enough to obtain reasonable 
absolute estimates of the mean domain sizes Td in 
the various d*hkt directions. More importantly, the 
relative domain sizes in the d~k I directions can still 
be used to identify the (HOL) planes forming the 
boundaries. Further justification for continuing with 
the implementation of the present theory is given by 
the fact that it is consistent when applied to changes 
in l eol and that the broadening contribution of (HOL) 
boundaries is the same irrespective of whether they 
are in a 5b region or a 3b region. Nevertheless, 
we are currently working on how the diffraction 
t heo~  can be generalized to a model with inter- 
growths of 3b and 5b regions (and 5b and 2b 
regions) with antiphase domains included in each 
region to explain the broadening across the complete 
solid-solution range from Bal.14Mgl.14Ti6.86O16 to 
Ba~ .33 Mg1.33Ti6.670 1 6  • 

To obtain an accurate mean domain size 
Td(=d/ad)  from each value for T d°m in Table 2 using - -app 

(29b), it is also necessary to know the appropriate 
value for the shift qo for each superlattice line. We 
have made the assumption that the appropriate value 
for q0 is not the absolute shift relative to the 20 

corresponding to k = 1/3 or 2/3, but is the shift rela- 
tive to the 20 value for which 1/Tapp = 0 (i.e. 20rer). 
In this work we have determined 20ref by assuming 
that the 20 angle of each superlattice in the annealed 
and rapidly cooled specimens is given approximately 
by 20 = 20rer+ ~/Td°m v,--app where C is a constant for a 
particular line. The term qo is then given by (20 - 2 0~r) 
cos 0/h. The values of qo determined in this way for 
all the superlattice lines are presented in Table 3 along 
with the mean domain thickness values Td obtained 
from (29b). It should be noted that the shifts q0 are 
sma.ll and have little effect on the value of Ta obtained 
as 1/(Td°m]2>> 20tdqmO and values within 2% of those - - a p p  / 

quoted in Table 3 could have been obtained by writing 
(29b) as 

1/Td°m ~ O~d 
--app 

27rd(1 - ad/2) '/2" 

Also included in Table 3 are the corresponding shifts 
leo*l in the k index relative to the above reference 
20rer values and given by e* = bmqo/dk where d is the 
d spacing, b is the lattice parameter and k = 1/3 or 
2/3. (Note: the term e.o* # ~-o, the latter is the shift 
relative to k = 1/3 or 2/3.) 

To identify the planes on which the domain boun- 
daries form, we have used the method of Wilson & 
Zsoldos (1965). The algebra involved in applying this 
method to a monoclinic lattice is unnecessarily com- 
plicated. With most monoclinic hollandites /3-~ 90 ° 
and a = c and very little error is incurred by assuming 
the unit cell is tetragonal with b as the unique axis 
a n d  atet=[(aC)mono] 1/2. In Bal.33Mgl.33Ti6.67016, a 
and c differ by only 3% and 13-~ 91 °. Two boundary 
models have been examined. 

Model A: Boundaries on the (100) and (001) planes 
with a mean domain size T,0o = ate~/aa in each of the 
corresponding directions and boundaries on the (010) 
plane with a mean domain size Tolo=3b/ab in the 
[010] direction. 

Model B: Boundaries on the (101) and (10i) planes 
with a mean domain size T, ol = d~o~/a~o~ in each of 
the corresponding directions and boundaries on the 



R. W. CHEARY AND R. SQUADRITO 27 

(010) plane with a mean domain size Tolo = 3b/ab in 
the [010] direction. 

The variation of the mean domain size Td with hkl 
for these models is reflected in the two equations 
below: 

model A 

model B 

1 Ihl+l/I k 
- - + - -  (33) 

Tdd atet Tloo Tolob' 

1 dlol( lh+ll+lh-l l )  k 
t - - -  (34) 

Tad 2 7"1Ol Tolob" a tet 

These models have been applied to the present data 
and of the two model B gives the better fit for both 
the rapidly cooled and annealed specimens. This is 
illustrated in the plots of b/kdTd against bdlo~([h+ 
l l + l h +  ll)/ka2tet shown in Fig. 6 which are both rea- 
sonably linear. The slope and intercept of the graph 
for the rapidly cooled specimen indicate a mean 
domain size Tlol between (101) boundaries in the 
[101] direction of 31 (5) A, and a mean domain size 
Tolo between (010) boundaries in the [010] direction 
of 70 (10)A,. The annealed specimen gives a slope 
=0 and an intercept corresponding to T010 = 
170(10) A,. In this specimen very few boundaries 
form on the (101) or (101) planes. Annealing therefore 
acts on (101) boundaries to a far greater extent than 

0.08" 

0.06 

0.04 

0.02 

0.0( 
0 

L b (4") 

~ R a p i d l y  

Annealed 
• • Specimen 

2 
b(dl01 ) 

( I h + ' l  + [h - ' I)  k(a) 2 

Fig. 6. A plot based on the corrected apparent particle size T from 
the broadened superlattice lines in the rapidly cooled and 
annealed samples. The fitted line for the annealed sample has 
zero slope and only (010) domain boundaries are present with 
an average domain size of 170/~. In the rapidly cooled specimen 
the fitted line suggests domain boundaries on the (101) planes, 
with an average domain size of 31 (5)A, in the [101] direction 
and on the (010) plane with an average domain size of 70 (10)/~ 
in the [010] direction. 

the (010) boundaries which are more stable and less 
mobile. A reduction in the number of (010) boun- 
daries can only occur if the boundaries diffuse to the 
crystal surface or if they coalesce into multilayer 
boundaries. 

Concluding remarks 

The theory developed here for interpreting X-ray line 
profiles in terms of the antiphase domain structure 
in Bal.33Mgl.33Ti6.67O16 appears to be consistent with 
the current data. As such it can be used as the basis 
for investigating the thermodynamics of domain 
growth in this material. In its present form the diffrac- 
tion theory is not strictly applicable to hollandites 
with Ba concentrations other than x--- 1.33 and fur- 
ther work is required to generalize the present 
approach to any composition in the solid-solution 
range. This will allow the thermodynamics of any 
hollandite domain structure to be investigated by 
X-ray powder diffraction. 
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